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Abstract
Fromharvesting to consumption of the faba bean (Vicia faba), different plant residues such as stems, leaves, pods, and seed husks 
remain as by-products. The harvest residues constitute about 50% (w/w) of the whole aboveground biomass, while the empty 
pods and the seed husks account for 11% and 6% (w/w) on average, respectively. Due to the environmental and dietary benefits, 
the global production of faba beans is most likely to increase in the future. Concomitantly, the amounts of by-products will rise as 
well. So far, mainly the harvest residues have been widely studied, whereas the pods and husks have received less consideration. 
Therefore, the aim of this review was to provide an overview of the composition of the faba bean plant residues and to illustrate 
their potential of being used as feedstock in food, feed, or even non-food applications. This literature survey clearly reveals that all 
the residual materials of faba beans contain valuable compounds and might be suitable for a multitude of different applications. 
The residual material should thus not be disposed of but further valorized in order to exploit the full potential of the biomass.

Keywords Legumes · Faba bean · Biorefinery · Protein · Fibres · Feed · Food

1 Introduction

Faba bean (Vicia faba L.) is a versatile legume cultivated all 
over the world. V. faba crops are classified into three main vari-
eties according to their seed size: (1) V. faba major with large 
seeds (also commonly called broad bean), (2) V. faba equina 
with medium seeds, and (3) V. faba minor with small seeds (also 
commonly called tick bean, field bean, or horse bean) [1, 2].

The annual global production of faba beans is more than 
5.5 million tons, with China, Ethiopia, Egypt, UK, and 
Australia being the main producers [3]. Cultivation of grain 
legumes in the European Union and especially Germany 
is currently negligible. About 1.4% of the German arable 
land and about 2.1% of the European Union are covered 
by grain legumes with around 30% being faba beans [4]. 
In recent years, however, there has been an upward trend 
in faba bean production due to associated environmental 
benefits and a kind of revival in human nutrition suggest-
ing the consumption of more plant proteins and especially 
originating from legumes.

Like all legume genera, symbiosis with Rhizobia bacteria 
enables faba beans to fix atmospheric nitrogen, which is then 
used for faba bean metabolism. Parts of nitrogen are also 
released to the soil. The inclusion of legumes in farming 
systems can contribute to mitigating climate change as they 
reduce greenhouse gas emissions and play a key role in soil 
carbon sequestration [5]. Faba beans also contribute to the 
diversification of agroecosystems, either when being used 
in crop rotations or by using intercropping systems. Both 
increase biodiversity as they provide feed to pollinators and 
other beneficial insects [6].

With regard to nutrient composition, faba beans are rich 
in proteins, starch, dietary fibres, and have low fat contents 
(Table 1). They are a good source of dietary minerals and 
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trace elements such as potassium, phosphorus, iron, and 
zinc [7] and vitamins such as folic acid (vitamin B9) and 
vitamin K [8]. They also contain considerable amounts of 
bioactive compounds such as phenolic compounds which 
are known for their antioxidant, anti-inflammatory, and anti-
diabetic properties [9]. However, faba beans also contain 
various substances such as tannins, lectins, phytates, sapo-
nins, oligosaccharides, and protease inhibitors [10] that are 
regarded as anti-nutrients that may limit the use of faba 
beans, especially in animal nutrition. The chemical com-
position strongly depends on the cultivar [11–14], as well 
as on ecophysiological factors [12, 13] and management 
conditions [14, 15].

Faba beans are widely used for human consumption and 
animal nutrition [1]. Human consumption of faba beans in 
Northern Europe has been reported as far back as the Viking 
Age (700–1050 CE) [17]. The oldest seeds of faba beans 
were found in the late tenth millennium BP in north-west 
Syria [18], suggesting that the faba bean has been used for a 
much longer time. Faba beans can be consumed either fresh 
(raw or as a vegetable) or in dry form in a variety of foods 
[19]. Due to their high protein content, they can be included 
in the diets of ruminants, pigs, and poultry to a certain level, 
depending on the amount of anti-nutrients [1, 7].

Due to the environmental and dietary benefits, the global 
production of faba beans is most likely to increase. Simul-
taneously with increasing amounts of produced beans, the 

amounts of produced by-products will increase as well. From 
harvesting to consumption of the faba beans, several by-
products such as stalks, leaves, pods, and seed husks occur, 
which are currently underutilized. This review provides an 
overview of the quantification and composition of by-prod-
ucts present and their potential use in food, feed, or non-food 
applications.

2  By‑product generation—harvesting 
and processing residues

Along the growing, the harvesting, and the processing of 
faba beans, different by-products are occurring (Fig. 1). The 
amount of by-products in faba bean processing depends on 
the maturity level. Faba beans can be harvested at a vegeta-
tive state when pods and seeds are fresh and green or at full 
maturity when pods dry out with only the seeds being of 
interest [9]. The beans are predominantly harvested in the 
dry state. In some production areas, for example, in Jordan 
[20], and in small-scale household gardening [21], the har-
vesting of fresh beans dominates.

When the faba bean is harvested in the dry state, the 
grains are removed from the pods by threshing. Large quan-
tities of biomass residues, comprising stalks, leaves, and 
dried pods, remain in the field afterwards. In China alone, 4 
million tons of faba bean stalks accumulate annually [22]. 
The amount of total residual biomass can be derived from 
the harvest index, which is an agricultural indicator that des-
ignates the ratio of the grain yield to the total aboveground 
biomass yield. The harvest index of faba beans has been 
measured in a large number of studies and ranges mostly 
from 40 to 60% (w/w, based on dry matter, DM) [23–34]. 
This implies that on average, around 40 to 60% (w/w) of 
the aboveground biomass remains unused and as residues 
in the field.

When the faba bean is harvested in the fresh state, the 
whole pods including the seeds are removed either manually 
or mechanically. Accordingly, less harvest residues remain 
in the field. The pods constitute about 20% (w/w, based on 

Table 1  Average composition of faba beans on a dry matter (DM) 
basis, compiled by Muschiolik and Schmandke [16]

Parameter Amount [%, w/w]

Proteins 22–37
Starch 30–53
Fat 1–3
Carbohydrates 50–66
Crude fibre 6–8
Soluble sugar 6–11
Ash 3–5

Fig. 1  By-products of faba 
beans harvested dry (left) and 
fresh (right). Harvest residues 
are outlined with a dotted and 
processing residues with a 
dashed frame
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dry matter) of the harvest residues [34, 35]. The freshly 
harvested pods may be sold intact, but most commonly the 
grains are also released from the pods and are sold fresh, 
frozen, or canned [36]. These empty pods remain as residual 
material and constitute about 70–75% (w/w) of the fresh 
matter of the whole pod yield [36–40]. However, when only 
the dry mass of the fractions is considered, the seeds consti-
tute about 80% (w/w) of the dry pod weight, while the empty 
pods only account for 20% (w/w) [35, 41, 42].

Both fresh and dried faba beans are generally consumed 
or further processed after the removal of the seed husk, in 
order to improve the nutritional value [43]. The husks con-
stitute approximately 10–15% (w/w) of the seed DM [16, 
19, 37, 44–46]. Dehulling of dry beans is usually done by 
industrial or small-scale milling [47]. Apart from the husks, 
other by-products such as broken grains, germs, and powder 
occur [47].

Figure 2 gives an overview of the mass fractions of the 
different residues and the final dehulled grains in relation 
to the total aboveground biomass. The calculation is based 
on mean values from the abovementioned references. It is 
apparent that the plant parts remaining in the field account 
for the majority of the residues, while the pods and husks 
make up smaller mass fractions. Besides, empty pods and 
husks might not always be generated from the process-
ing. In the following sections, the use of harvest residues 
(leaves and straw) and process residues (pods and husks) 
is discussed.

3  Harvest residues—leaves and straw

The composition of faba bean harvest residues was deter-
mined in a large number of studies, and an overview of the 
proximate composition is given in Table 2. The composition 
may vary widely depending on cultivar [33, 34], cultivation 
conditions [30, 38], and the proportions of stems, leaves, and 
pods [37]. Faba bean harvest residues are very rich in fibres. 
On average, the major cell wall components hemicellulose, 
cellulose, and lignin together account for more than 60% 

Fig. 2  Mass flow of faba bean biomass, harvested dry (left) and fresh (right), given in % (w/w) DM of aboveground biomass

Table 2  Composition of faba bean plant residues [22, 30, 33, 34, 38, 
42, 51–68]. All values given as g  kg−1 DM (n number of observa-
tions, SD standard deviation)

n Mean Minimum Maximum SD

Crude fibre 6 350.2 264.3 467.0 78.8
Hemicellulose 40 102.3 15.6 353.0 73.2
Cellulose 41 386.4 168.0 560.0 112.9
Lignin 42 114.6 39.0 324.0 48.9
Crude protein 26 80.7 43.0 188.0 38.5
Fat 4 12.2 10.0 14.0 2.1
Ash 26 82.6 46.0 184.2 31.6
N 7 20.0 11.6 29.6 7.4
P 9 2.6 1.0 5.3 1.6
K 6 16.5 13.2 25.2 4.5
Na 2 1.0 0.3 1.6 -
Ca 6 16.0 8.7 23.1 6.1
Mg 6 2.5 1.7 4.8 1.2
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(w/w) and, thus, constitute the main part of the plant resi-
dues. Cellulose makes up 40% (w/w), while hemicellulose 
and lignin are mostly below 15% (w/w). However, the straws 
studied showed a wide range in cellulose, hemicellulose, 
and lignin content. The average crude protein content of 
the straw is about 8% (w/w), ranging from 4 to 19% (w/w). 
While stems and pods have low protein contents, leaves can 
contain up to 35% (w/w) [48]. The ash content is mostly 
below 10% (w/w) with the leaves having a higher percent-
age than the stems [34]. The protein and ash contents are 
in the range of other legume straws but rather high com-
pared to cereal straws [49, 50]. Faba bean residues contain 
considerable amount of nitrogen, potassium, and calcium 
(mostly above 1%, w/w) and smaller amounts of phosphorus, 
sodium, and magnesium (mostly below 0.5%, w/w).

3.1  Harvest residues—food use

The use of faba bean plant residues for human consumption 
is not particularly widespread. For direct consumption, only 
the freshly harvested leaves, the faba greens, are considered. 
According to Renna et al. [48], faba greens are traditionally 
consumed as “unconventional vegetable” in Puglia, a region 
in south-east Italy. They can either be eaten raw in salads or 
cooked liked spinach in pasta dishes, quiches, or omelettes. 
On the internet, there are some recipes and instructions for 
faba greens, but scientific literature on their composition is 
scarce.

Faba greens have the potential as unconventional food 
due to their composition. Compared to spinach, faba greens 
have a significantly higher protein content, contain more 
carbohydrates and dietary fibres, and have a lower nitrate 
content [48]. Etemadi et al. [69] investigated the element 
accumulation in different parts of six faba bean varieties. 
The concentrations of nitrogen, phosphorus, potassium, and 
zinc were significantly lower in the leaves than in the seeds. 
However, the concentration of calcium and iron was more 
than eight times higher in the leaves than in the seeds. The 
accumulation of magnesium and manganese was also sig-
nificantly higher. Faba bean leaves are thus supposed to be 
a good source of mineral and trace elements.

Besides, faba greens are a valuable source of phytochemi-
cals, especially at a young age. In a comparative study, the 
leaves were shown to have significantly higher contents of 
vitamin C (four times higher), L-3,4-Dihydroxyphenylalanin 
(l-DOPA), being the precursor of dopamine (> 10 times), 
total flavonoid content (TFC) (> 40 times), and total phe-
nolic content (TPC) (> 10 times) than the seeds [70]. Due to 
the higher concentrations of antioxidants, faba bean leaves 
exhibit a stronger antioxidant activity than the seeds.

However, the consumption of fresh faba bean leaves 
might be hampered by the presence of volatile organic com-
pounds (VOC) inducing undesirable flavours. Duan et al. 

[71] detected a total of 69 different compounds in the fresh 
leaves with alcohols (72%), aldehydes (14%), ketones (5%), 
and esters (3%) accounting for more than 90%. The authors 
investigated the influence of four different domestic cooking 
methods on the composition of the leaves. A cooking time of 
5 min was recommended, as it significantly reduced the con-
tent of VOC and improved the flavour without compromis-
ing the nutritional value. Microwaving and steaming were 
more effective than boiling and roasting although microwav-
ing significantly increased the p-xylene content which might 
have harmful effects on the human health [71].

3.2  Harvest residues—feed use

In addition to the potentially food-relevant leaves, faba bean 
straw may either be fed as roughage or included in a mixed 
diet to a certain extent. The crude protein content of faba 
bean straw is about 8.7% (w/w) on average (Table 2). For 
optimum rumen microbial function of ruminants, the feed 
should contain at least 7% (w/w) crude protein [72]. This 
threshold is surpassed by most of the straws reported in lit-
erature. However, depending on the composition and the 
variety, the protein content can be significantly lower (e.g. 
4.3% (w/w) in the cultivar Shallo [33]) or higher (e.g. 18.8% 
(w/w) in plant residues containing seeds [51]).

The metabolizable energy (ME) content of faba bean straw 
was reported to be between 6.2 and 9.2 MJ  kg−1 DM for sheep 
[33, 52], between 6.3 and 6.7 MJ  kg−1 in a rumen inoculum 
[34], and between 6.5 and 7.5 MJ  kg−1 using a predictive 
model based on near-infrared spectrophotometry data [53]. 
Compared to other substrates, the ME content is rather low 
[72]. The amount of cell walls, measured by the neutral deter-
gent fibre (NDF) content, is the primary chemical component 
that determines the rate of digestion [73]. The reported NDF 
content of faba bean straw ranges from 44.0 to 82.2% (w/w) 
with an average of 67.4% (w/w). According to Ellis et al. [74], 
fibrous feeds with NDF contents lower than 45% (w/w) can 
be classified as high-quality roughage, while those contain-
ing 45–65% (w/w) are categorized as of medium quality, and 
those with more than 65% (w/w) are considered low-quality 
roughage. Considering the fibre content, faba bean straw is 
thus of medium to low feeding quality.

Correspondingly to the high NDF content, the digest-
ibility is rather low. In vitro dry matter digestibilities 
(IVDMD) between 54.7 and 58.8% (w/w) were reported 
[54, 55], while the in vitro organic matter digestibilities 
(IVOMD) of different faba bean varieties ranged from 
45.1 to 62.6% (w/w) [33]. In comparison, the IVOMD 
of wheat bran and noug seed (Guizotia abyssinica) cake 
were 84.5% and 69.4% (w/w), respectively [33]. The 
in vivo digestibilities in sheep were found to be at 56% 
(dry matter) and 60% (organic matter) [56].
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Feeding trials with faba bean straw have been carried 
out with sheep and rabbits. According to Fujihara and 
Nakao [75], the nutritive value of ensiled fibrous faba 
bean residues was higher than that of timothy hay, and the 
feedstock might be used as a roughage by sheep. Adding 
ensiled faba bean fibrous residues to low-quality timothy 
hay improved feed quality and increased ruminal ammo-
nia concentration and the levels of the blood constituents 
in male Japanese Corriedale sheep [76].

In a study including 13 different straws (nine legume 
species, three rice varieties and rape) fed to adult merino 
sheep, faba bean straw showed average performance. 
Organic matter digestibility (48.3%) was moderate and 
dry matter intake (61 g  kg−1 liveweight) was in the lower 
range of the studied legume straws but significantly 
higher compared to rice and rape straw. Feed quality of 
faba bean straw was improved by adding barley grain 
(20–40%, w/w) to the diet [52].

Asar et al. [57] investigated the effects of the inclusion 
of 25% (w/w) faba bean straw in the diet of weaned rab-
bits. Though the voluntary feed intake of diets contain-
ing faba bean straw was lower compared to the control 
diet, no significant differences in body weight gain were 
measured. The feed conversion ratio and the digestion 
coefficient values were significantly improved by includ-
ing faba bean straw in the diet.

Feeding trials showed that faba bean straw can be used 
for animal nutrition. However, concerning nutritional 
value and digestibility, the biomass is considered of rather 
low quality. For optimum animal performance, the faba 
bean residues might require some nutrient supplementa-
tions or pre-treatments [54, 55]. Omar et al. [77] showed 
that microbial fermentation of faba bean by-products 
could enhance their nutritional value by increasing the 
concentration of crude protein and fat and decreasing the 
amount of crude fibre, lignin, and anti-nutrients. Simi-
larly, the incubation of broad bean stalks with white-rot 
fungus Pleurotus ostreatus significantly improved their 
nutritive value [78].

In addition, to improve the forage quality, the culti-
vated variety can be selected appropriately, as the variety 
also has an impact on the suitability of the straw as feed. 
Wegi et al. [33] studied the effect of feeding five differ-
ent varieties of faba bean straw to Arsi-Bale sheep in a 
diet consisting of 70% faba bean straw and 30% concen-
trate (wheat bran and noug seed cake). The straws showed 
great differences in composition and in intake, digest-
ibility, feed conversion efficiency, and body weight gain.

3.3  Harvest residues—non‑food use

The most widespread application of faba bean residues in the 
non-food sector is the (re-)incorporation into the soil, either 

fresh as green manure or dried as straw. Crop residues left on 
the field can exert several positive effects on the physical and 
chemical properties of the soil. Faba bean straw has shown 
to increase the water holding capacity, the field capacity, 
and the cation exchange capacity of a sandy soil [79]. Straw 
retention in the soil significantly improved soil organic car-
bon content (SOC), while straw removal remarkably reduced 
SOC [80]. Straw returning to a paddy and a dry-land soil 
in China promoted the aggregation of soil aggregates and 
increased the SOC content [81]. The incorporation of faba 
bean into the soil as green manure successfully reduced the 
weed emergence by up to 67% without compromising the 
emergence of maize [82] and significantly increased the 
potato tuber yield by up to 38% [83].

Apart from the benefits, there is a risk of elevated green-
house gas emissions after application of legume residues due 
to their low C/N ratio which stimulates the formation and 
release of nitrous oxide  (N2O) [5]. While ammonia  (NH3) 
emissions are significantly reduced by applying faba bean 
green manure,  N2O emissions might be comparable to min-
eral fertilizers [84]. However, the removal of crop residues 
from the field can cause negative nitrogen balances resulting 
in a potential depletion of the soil [35].

The removal of legume residues for non-food applica-
tions represents a significant trade-off between the bioec-
onomy and the soil quality. The amount of biomass that is 
taken from the cropping system should be carefully deter-
mined with respect to the specific local conditions [5, 80]. 
Depending on the chosen process, biomass might be par-
tially returned to the soil as stabilized co-product that is 
more recalcitrant to degradation than the raw biomass and 
can maintain or even increase SOC [85].

Nevertheless, a variety of different applications for mate-
rial and energetic use of faba bean straw have been proposed. 
Faba bean straw may be used as feedstock for thermochemi-
cal conversion processes such as combustion. An overview 
on the quality parameters of faba bean straw pellets, partially 
blended with another biomass, compared to the average of 
woody pellets, is given in Table 3.

The lower heating value of faba bean residue pellets 
was approximately 17 MJ  kg−1 DM. Blending with maize 
and hemp residues did not significantly influence the cal-
orific value, while the addition of potato skin decreased 
the calorific value. The heating value is similar to that of 
other herbaceous material and not significantly lower than 
wood pellets [87]. Pellet density ranged between 1100 and 
1350 kg  m−3 and met the requirements for biofuels [87].

High ash content negatively affects fuel quality due to 
deposit formation, increased fly ash emissions and higher 
efforts for ash storage and deposition [90]. Though the ash 
content is higher than that of wood pellets, it still remains 
below the permissible ash content of 7% (w/w) for mixed 
biomass pellets [91] except for the pellets made from faba 
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bean residues and potato skin. The ash melting temperature 
was similar to that of other plant pellets [92].

Compared to woody pellets, faba bean pellets contain 
higher contents of nitrogen, chloride, and sulphur. Emis-
sion levels of carbon monoxide (CO), carbon dioxide  (CO2), 
nitrogen oxide  (NOx), sulphur dioxide  (SO2), and unburned 
hydrocarbons  (CxHy) were mostly higher compared to wood 
pellets but did not exceed the limit values [87, 88, 92]. The 
authors conclude that faba bean plant residues are an appro-
priate feedstock for combustion. However, Jensen et al. [5] 
point out that combustion might not be a sustainable conver-
sion technology for nitrogen-rich legume biomass due to the 
formation of nitrogen oxide emissions.

Faba bean straw was also examined as feedstock for low-
temperature pyrolysis at 350 °C for 4 h. The produced biochar 
was incorporated in four acidic soils at 1% (w/w) and showed 
positive impact on soil pH and cation exchange capacity. Soil 
acidity was reduced, and soil fertility improved [58]. While legu-
minous straw generally yielded more promising chars than non-
leguminous feedstock, biochar from faba bean straw showed the 
lowest performance among the studied legumes [93].

Owing to their high polysaccharide and low lignin con-
tent, faba bean residues represent a promising feedstock for 
biochemical conversion processes. Legume biomass is gen-
erally well suited for anaerobic digestion due to the valu-
able content of nitrogen, phosphorus, and other nutrients 

and has only slightly lower methane yields than maize and 
grass biomass [5]. Faba bean whole crop biomass (including 
the seeds) and straw have also mostly shown high methane 
production potential comparable to maize (Table 4). Neither 
ensiling nor wet oxidation of the feedstock improved the 
methane yield leading to the conclusion that pre-treatment 
of the biomass is not necessary [51, 59].

As faba bean residues contain high amounts of carbohy-
drates, they might represent an interesting feedstock in biore-
finery processes in order to produce fermentable sugars [60]. 
Enzymatic hydrolysis resulted in a sugar yield of 28% (w/w) 
for untreated and 43% (w/w) for pre-treated (wet oxidation) 
faba bean straw. Simultaneous saccharification and fermenta-
tion yielded 6.5% (w/w) ethanol without pre-treatment and 
52% (w/w) after pre-treatment [59]. According to Pakarinen 
et al. [61], the fresh material can even be reasonably well 
hydrolysed (30% (w/w) of dry matter and 37% (w/w) of total 
carbohydrates) without a pre-treatment. However, the ethanol 
yield calculated based on the hydrolysis was significantly 
lower (196 L  t−1 DM) than the theoretical ethanol yield (356 
L  t−1 DM), owing to the inaccessibility of the materials with-
out a pre-treatment. Accordingly, in order to fully exploit 
the potential of faba bean residues, a pre-treatment should 
be applied. Alkaline pre-treated faba bean residues showed 
significantly higher saccharification levels compared to water 
and acid pre-treatment [30].

Table 3  Quality parameters of pellets produced from faba bean residues in combination with other plant residues compared to wood pellets 
(LHV lower heating value)

1 Heating value given as MJ  kg−1 FM and converted to MJ  kg−1 DM using the moisture content

Feedstock LHV Density Ash N Cl S Reference
[MJ  kg−1 DM] [kg DM  m−3] [% DM, w/w]

Wood 18.41 0.9 0.2 0.01  < 0.01 [86]
Faba bean 16.9–17.1 1276–1311 3.9–6.9 1.3–1.6 0.3–0.5  < 0.1 [87]
Faba bean 17.0 1311 3.9 [88]
Faba bean 17.1 1196 5.7 0.9 0.2  < 0.1 [89]
Faba bean + maize residues 16.8 1106 6.8 0.8 0.1  < 0.1 [89]
Faba bean + hemp residues 17.0 1128 5.8 0.9 0.1  < 0.1 [89]
Faba bean + potato skin 15.3–16.0 1223–1350 8.1–14.2 0.3–2.3 0.2–0.3 0.1–0.2 [88]

Table 4  Methane yield from 
faba bean whole crop and straw 
(VS volatile solids)

Feedstock Pre-treatment Inoculum Methane yield [L 
 CH4  kg−1 VS]

Reference

Maize - Digested sewage sludge 379 [61]
Faba bean whole crop - Digested sewage sludge 387 [61]
Faba bean whole crop - Digested sewage sludge  ~ 380 [51]
Faba bean whole crop Ensiling Digested sewage sludge  ~ 250 − 350 [51]
Faba bean whole crop Ensiling Digested corn-silage and 

cattle slurry
 ~ 250 − 330 [94]

Faba bean straw - Digested manure 440 [59]
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Faba bean waste was also considered as source of car-
bohydrates for a microbial fuel cell. Microbial fuel cells 
are emerging technologies that produce bioenergy by using 
microorganisms to degrade biological substrates. Mamani-
Asqui et al. [62] dissolved faba bean residues in industrial 
wastewater inoculated with a bacterial consortium contain-
ing the exoelectrogenic bacteria Pseudomonas aeruginosa, 
resulting in an efficient fuel cell. Under optimized condi-
tions (pH 5.5, residue concentration of 6 g  L−1, temperature 
32 °C), the fuel cell yielded a maximum potential of 802 mV 
and a maximum power density of 283 mW  m−2. According 
to the authors, the developed fuel cell might be promising 
for rural areas with limited access to electricity.

The production of biohydrogen from faba bean residues 
proved only moderately fruitful. Faba bean stems were sub-
jected to an acid hydrolysis using phosphoric acid up to 7% 
(v/v), followed by fermentative biohydrogen production 
using Clostridium butyricum and Enterobacter cloacae. 
Compared to corn cobs, faba bean stems showed signifi-
cantly lower sugar production potential (166 vs. 427 g  kg−1 
raw material) and hydrogen yields (0.33 vs. 0.52 mol  H2 per 
mol hexose) [60, 95].

Faba bean residues have rarely been investigated for their 
suitability for material and chemical applications. Álvarez-
Iglesias et al. [96] explored the phytotoxic potential of aque-
ous extracts of faba bean straw in an in vitro study. The effect 
of extracts of varying concentration (10 to 67 g faba bean 
residues  L−1) on the germination and growth of the forage 
crops maize and soybean and three representative summer 
weeds was measured. At low concentrations (< 50 g  L−1), 
the extracts inhibited the germination and early growth of 
the weeds while not negatively affecting maize and soybean 
growth. The effectiveness was higher than that of the syn-
thetic pre-emergence herbicide metolachlor. Faba bean straw 
extracts might thus be a promising agent for weed control 
in a sustainable agriculture, albeit experiments under field 
conditions are needed to corroborate the results [96].

Ground faba bean shoots were investigated for their 
potential to remove chromium(VI) from aqueous solutions 
in order to remediate industrial wastewaters. The maximum 
adsorption capacity (Qm) was about 19.4 mg   g−1. Date 
palm leaves, however, provided higher removal efficiency 
(Qm = 22.5 mg  g−1) and were more tolerant to different pH 
levels in the solution [97].

Faba bean stalks have shown to be a promising material 
for the production of biocomposites. Stalks were success-
fully liquefied in order to produce biopolyols and polyure-
thane foam, replacing fossil resources [22]. Faba bean stems 
were used to produce pulp and paper for corrugated card-
board using a soda semi-chemical pulping process. Biomass 
chips were digested with an aqueous solution of sodium 
hydroxide (95 g  L−1) at 10% (w/w) solid content for 3 h, 
and the resulting pulp was pressed and refined. The produced 

papers had properties related to compression resistance simi-
lar or superior to secondary fibres and miscanthus fibres, yet 
the burst index and the tensile strength index were inferior. It 
was concluded that faba bean residues represent a promising 
feedstock for the paper industry. Additionally, hemicellu-
loses and lignin could be recovered from the spent cooking 
liquors for the production of value-added chemicals [63].

4  Processing residues—pods

Compared to the harvesting residues, only little research 
was conducted concerning the composition of the pods. An 
overview on the composition of the pods based on the exist-
ing data is given in Table 5. The main components of faba 
bean pods are fibres. On average, hemicellulose, cellulose, 
and lignin together account for almost 55% (w/w). Cellulose 
makes up the major part (about 36%, w/w), while hemicel-
lulose and lignin are mostly below 10% (w/w). As in the case 
of the harvesting residues, the cellulose, hemicellulose, and 
lignin contents show a fairly high variability. Faba bean pods 
are rich in dietary fibres (40.1% (w/w) [98]–57.5% (w/w) 
[99]). The crude protein content is rather high at about 14% 
(w/w), while the fat content is low (about 1%, w/w). The ash 
content is 8% (w/w) on average and is mainly composed of 
potassium, phosphorus, sodium, magnesium, calcium, and 
some trace elements like iron, copper, and zinc [99]. Unlike 
nitrogen and phosphorus, potassium is mainly accumulated 
in the pods leading to significantly higher concentrations 
compared to the seeds and leaves [69]. Faba bean pods con-
tain appreciable amounts of bioactive phytochemicals such 
as flavonoids and tannins [99–101]. More than 100 phenolic 

Table 5  Composition of faba bean pods [34, 36, 42, 69, 98, 99, 101, 
103, 104]. All values given as g  kg−1 DM (n number of observations, 
SD standard deviation)

n Mean Minimum Maximum SD

Crude fibre 4 424.0 370.0 479.0 51.0
Hemicellulose 5 100.2 49.0 146.0 44.1
Cellulose 5 372.6 305.2 432.0 50.0
Lignin 5 94.4 76.0 116.0 17.2
Crude protein 20 138.8 74.0 291.1 57.9
Starch 2 59.5 2.0 117.0 -
Fat 4 9.2 2.4 13.0 4.8
Ash 9 80.0 46.7 116.0 19.4
N 7 15.4 12.9 17.9 1.8
P 8 4.1 0.7 5.4 1.5
K 11 26.5 19.5 36.7 5.5
Na 5 2.9 0.5 4.8 2.0
Ca 11 4.1 0.7 5.9 1.4
Mg 11 3.5 1.2 5.6 1.5
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compounds, mostly flavonoids and their glycosylated forms, 
were detected in the pods [100]. Total phenolic content 
(57–149 mg  g−1 as gallic acid equivalents, GAE), flavonoid 
content (10.2–45.9 mg  g−1 as rutin equivalents, RE), and 
antioxidant activity (0.7–4.5 Fe (II) mmol  g−1) showed to 
be highest in the pods, compared to the seeds and the seed 
husk [102].

4.1  Pods—food use

Historically, the culinary use of faba pods, for example, in 
Italy, occurred in times of poverty and food scarcity and 
allowed the valorization of by-products as “unconventional 
vegetables” [36, 48]. Today in particular, bean pods as 
unconventional vegetable could enrich conventional dishes 
and thus satisfy the current increasing demand for high-
quality food [105] and moreover serve as a source of other 
food-relevant ingredients.

Fresh bean pods are an important food source of protein, 
energy, and trace elements (Table 5). However, as already 
described for faba bean seeds, the content of both, macro-
molecular components and secondary metabolites, can vary 
quite strongly depending on origin, variety, environmental 
conditions, time of harvest, and much more [11–15]. For 
example, Mejri et al. [99] found significantly different fat, 
ash, and carbohydrate contents in bean pods than described 
by Mateos-Aparicio et al. in a previous publication [98] and 
attributed this to the growing location. In the same study, 
Mejri et al. [99] identified eleven fatty acids, with unsatu-
rated fatty acids (UFA) being the most abundant fraction. 
The latter were predominantly composed of polyunsaturated 
essential linoleic acids (39.74%, w/w) and linolenic acids 
(24.99%, w/w). Palmitic acid (18.2%, w/w) and stearic acid 
(6.72%, w/w) are the most important saturated fatty acids, 
accounting for 30.78% (w/w) of the total fatty acids. A simi-
larly large variance is evident when looking at the published 
values for the protein and carbohydrate contents of faba bean 
pods (Table 5).

In a cross-comparison of the ingredients of faba bean 
seeds with bean pods carried out by Renna et al. [36], the 
authors point out that, in contrast to the seeds, the faba pods 
have a significantly lower content of the anti-nutrient vicine, 
with an average of 0.9 g  kg−1 DM. In comparison, for imma-
ture seeds of faba beans, a vicine content ranging between 
4.5 and more than 20 g  kg−1 DM was reported [106, 107]. As 
already mentioned, and in addition to vicine, other second-
ary plant compounds are contained in faba bean pods in not 
insignificant quantities, for example, phenolic compounds, 
L-DOPA and certain vitamins. Although the ascorbic acid 
content with an average of 0.4 g  kg−1 FM in the bean pods is 
ten times lower than the reported values for immature seeds 
of faba beans, faba pods can still be estimated as a good 

source of vitamin C, when the recommended daily intake of 
45–70 mg is considered [36].

In summary, the studies to date conclude that bean pods 
should not only be considered a by-product but should also 
be recognized as a new vegetable in the general food supply 
in the future or even functionally used in diets for certain 
diseases. As a possible further application for bean pods in 
the food industry, both pod flours and dietary fibres isolated 
from them have so far been investigated for their ability to 
positively influence baked goods by Belghith-Fendri et al. 
in 2016. In the first study, the authors investigated the effect 
of adding up to 1% (w/w) bean pod fibres to white bread 
doughs [108]. For the fibre extraction, pod flours were main-
tained in hot water at 70 °C for 15 min and filtrated to discard 
the insoluble residue. The fibre extracts were subsequently 
dried at 100 °C. Regarding the effects of dietary fibre (DF) 
on the texture of baked goods, the proportion of soluble die-
tary fibre (SDF) or insoluble dietary fibre (IDF) is decisive. 
While SDF, such as ß-glucan and arabinoxylan, have vis-
cous and gelling properties, IDF primarily bind water. Thus, 
a positive effect of SDF on bread quality has already been 
described repeatedly, while a certain concentration of IDF 
had rather opposite effects. The total DF content for pea pods 
after extraction was 91.61% (w/w) DM with a proportion of 
SDF of 5.23% (w/w) and IDF of 86.38% (w/w) each based 
on dry matter. As a result, the values for broad been pod DF 
are in a similar range as reported for apple fibre [109]. The 
proportion of soluble and insoluble DF is also similar for 
both. In baking tests, a positive change in the rheological 
and textural properties of the dough was observed. At low 
concentrations (0.25 and 0.5% (w/w), the loaf volume of the 
breads was significantly reduced, while higher concentrations 
of the fibres did not cause differences compared to the control 
breads. The springiness of the breads was increased up to a 
fibre content of 0.75% (w/w), while it decreased again from 
1% (w/w). Similar observations were also made for the adhe-
siveness and cohesiveness. The second publication describes 
the determination of the influence of flours from faba bean 
pods on the texture and sensory properties of cakes [103]. It 
was shown that pod flour up to a proportion of 15% (w/w) in 
the baking mix is suitable as a baking agent, also regarding 
acceptance in the sensory panel.

The content of bioactive compounds in faba bean pods 
offers another conceivable use in the food sector. By process-
ing bean pods into extracts, it is possible to use them for food 
enrichment and functional food production or even to find 
applications in the pharmaceutical or fine chemical sector.

In 2018, Mejri et al. [99] published a study that inves-
tigated the ingredients of broad bean pods in depth. In 
addition to the study of mineral and lipid content as well 
as fatty acids and their nutritional quality, the content of 
bioactive phytochemicals such as phenols, flavonoids, and 
tannins was investigated. The review should serve to provide 
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fundamental knowledge for the functional use of BBP, for 
example, as an ingredient in health-promoting bioproducts 
based on previously unused residues. Within their studies, 
Mejri et al. examined the most efficient solvents for extract-
ing phenolic compounds from faba bean pods. Methanol 
proved to be the solvent of choice with the highest recovery 
of both TPC (115.2 mg GAE  g−1 extract) and TFC (47.4 mg 
quercetin equivalents (QE)  g−1 extract), followed by etha-
nol, butanol, and ethyl acetate. The highest TPC and TFC 
values in the methanol extract indicated that the phenolic 
and flavonoid compounds in the bean pods were of high 
polarity, including flavonoid glycosides and more polar agly-
cones. The use of ethyl acetate allowed the greatest propor-
tion of condensed tannins to be extracted (4.6 mg catechin 
equivalents (CE)  g−1 extract). Lu et al. [110] could dem-
onstrate that in immature faba bean seeds, both TPC and 
TFC are strictly dependent on the stage of maturity of the 
plant. Comparable studies, particularly referring to the con-
tent and analytical detection of phenolic compounds from 
faba pods, have also been published by Chaieb et al. [102], 
Abu-Reidah et al. [100], and Loizzo et al. [111]. Loizzo 
et al. [111] showed that ( +)-catechin and ( −)-epicatechin 
are the two most prominent smaller phenolic compounds, 
with syringic acid also being detected. Furthermore, this 
study showed that significantly higher amounts of the two 
dominant compounds were found in the pods compared to 
bean seeds.

Faba bean pods are also considered to be a good mate-
rial for the extraction of other considerable nutrients, such 
as glucans and pectins. While the maximum glucan yield 
(45 mg  g−1) was attained at later maturity, the highest pec-
tin yield (17.2%, w/w) was recovered at the first stage of 
maturation [112].

4.2  Pods—feed use

As shown in Table 5, pods are rich in cellulose and hemicel-
lulose and eventually also in fibres. The protein content is 
compared with the fibre content relatively low (55.5% vs. 
13.8%, w/w) [99]. Due to its high fibre content, it may only 
be suitable as feed for animals able to handle a high fraction 
of fibres in their feed. Furthermore, a high fibre content may 
hinder the digestion of the other compounds [113]. Addi-
tionally, to the composition shown in Table 5, pods contain 
compounds such as phenolic compounds which can exhibit 
among others antimicrobial and radical scavenging effects 
[99]. The bioactive compounds obtainable from pods make 
it even an effective functional food [99].

Valente et al. [114] also investigated the presence of phe-
nolic compounds in faba bean pods and found various deri-
vates of caffeic and coumaric acids. Like Mejri et al. [99], 
they highlighted the high TPC and the beneficial properties 
as natural antioxidants for animal and human nutrition and 

health. It was concluded that pods “may have a key role 
for both ruminant’s condition and dairy products’ enhanced 
quality” and that pods as feed source for ruminants may fulfil 
“the current demand for alternative feed sources and more 
sustainable supply chains” [114].

Despite the functional properties associated with faba 
bean pods, their digestibility and use as feed was described 
only in a few studies. For instance, Malushi et al. [104] com-
pared the digestibility of different underutilized biomasses. 
Using defined in vitro methods, pepsin-cellulase digestion 
or the Tilley and Terry method, they evaluated the digest-
ibility of alfalfa hay, cereal, and pea straws as well as faba 
bean pods. Depending on the digestion method, 59% and 
72% (w/w) of Alfalfa hay, 30% and 47% (w/w) of cereal 
straw, 43% and 59% (w/w) of pea straw, as well as 39% and 
61% (w/w) of faba bean pod was digestible. As a significant 
fraction of faba bean pods could be digested, the authors 
concluded that pods should not be underutilized and can be 
used as feed source.

Results of feeding experiments with faba bean pods fed 
to ruminants were published already in 1940 by Woodman 
and Evans [115]. They fed pod-meal to sheep. As already 
stated above, the authors also found satisfactory digestibility 
of roughly two-thirds of the feed. In particular, about 75% 
(w/w) of the nitrogen-free extractives (about 60%, w/w) of 
the total dry substance is digestible. The authors noted that 
“the process of lignification has not proceeded far in young 
pea-pods”. Young pods are therefore easier to digest and to 
utilize as feed.

4.3  Pods—non‑food use

Faba bean pods have been considered for a wide range of 
applications, although the investigations were primarily 
proof-of-concept or screening studies, often consisting of 
an initial comparison of different agricultural residues. A 
focus has not yet emerged, and research is needed to further 
develop the applications suggested.

Faba bean pods were inspected for their general suitabil-
ity as feedstock for the extraction of different chemicals and 
substances. The biomass showed to be a promising novel, 
eco-friendly source of cellulose and cellulose derivatives. 
Vallejo et al. [116] investigated a multi-step solvent extrac-
tion procedure to produce cellulose that can be applied in 
the biomedical field as a reinforcing material of composite 
scaffolds. Four sequential extraction steps eventually yielded 
11.4% (w/w) of cellulose. Kassab et al. [117] evaluated 
the suitability of faba pods for the production of cellulose 
derivatives. Cellulose microfibres and cellulose nanocrys-
tals were successfully extracted from the pods with a yield 
of 18% (w/w) of the raw pod weight and 66% (w/w) of the 
cellulose microfibre weight, respectively. The produced cel-
lulose microfibres and nanocrystals might be used in various 
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technological applications such as in the biomedicine, cos-
metics, or electronics industry.

Additionally, faba bean pods showed to be a rich source 
of peroxidase enzymes that could potentially be applied 
in the environmental, biotechnological, chemical, or food 
industry. The percentage recovery after purification of per-
oxidases was at 8.9% and higher than for pea pods (4.3%) 
and artichoke stems (7.2%) [118]. Tyrosinase inhibitory pep-
tides could successfully be extracted from the pods by enzy-
matic proteolysis. The generated peptides exhibit potential to 
be used in the nutraceutical field in order to cure or prevent 
diseases that are caused by high tyrosinase levels [119].

A few studies have also investigated the application of 
products derived from faba bean pods. Faba pod extracts 
were assessed for their nematicidal activity against three 
nematode species. Compared to seven other agricultural 
wastes, faba bean pods and cabbage leaves, hydro-alcohol 
extracts showed the highest in vitro nematistatic properties, 
which were additionally corroborated by in vivo assays. It 
was supposed that the nematicidal activity was derived from 
the presence of phenolic compounds [120]. A natural dye 
for wool fabrics could successfully be extracted via alkaline 
aqueous extraction from the pods. The aqueous extract was 
characterized by a dark brown colour, which is related to low 
molecular weight phenolic compounds and tannins [121].

Bouatay et al. [122] investigated the valorization of faba 
pods mucilage as a natural flocculent for the treatment of 
textile wastewater. At optimal experimental conditions, 
the decolorization, the chemical oxygen demand (COD) 
removal, and the turbidity abatement were of 92.3%, 97.5%, 
and 81.8%, respectively. The mucilage showed good floc-
culation performance. Compared to two commercial floc-
culants, COD removal was higher, while decolorization and 
turbidity removal were somewhat lower. Beyond that, faba 
bean pods were tested as sorption agent for the removal 
of heavy metals from wastewater.  Qm for cadmium was 
147.7 mg  g−1 and thus significantly higher than that of peas 
and medlar peel and fig leaves (118.9, 98.1, and 103 mg  g−1, 
respectively) [123].

5  Processing residues—husks

Similar to the pods, there is sparse information on the gen-
eral composition of the faba bean husks. Table 6 gives an 
overview on a couple of data. The major fraction are carbo-
hydrates, including dietary fibres, which make up to almost 
80% (w/w) of the husk dry mass and starch, which amounts 
to only 3% (w/w) on average. The husks contain high-fibre 
fractions, which are mostly made of cellulose and to a lesser 
extent of hemicellulose and lignin. The average crude pro-
tein and fat contents are rather low at about 8% (w/w) and 
below 1% (w/w), respectively. The ash content is only 3% 

(w/w), but nonetheless, husks are considered to have a high 
mineral content [19].

TPC of husks was found to be between 21.5 and 110.3 mg 
GAE  g−1 [19, 102, 138]. Compared to the seeds, TPC was 
four (V. faba major) to eight times higher (V. faba minor) 
in the husks [46]. Tannins contribute the most to TPC 
(55–80%) [46, 139]. Dehulling reduced the tannin con-
tent in the seeds by 72% (V. faba major) and 27% (V. faba 
minor) [46]. Flavonoid content in the husks ranges from 5.7 
to 17.6 mg RE  g−1 [102], being fivefold higher than in the 
seeds [46]. Owing to the high phenolic and tannin content, 
the husks show a strong antioxidant activity [19, 46].

5.1  Husks—food use

Dehulling harvested faba beans is useful to increase the 
nutritive benefits of the beans in various foods as the husks 
are rich in tannins, often believed being anti-nutrients or of 
low nutritional value because of their astringency, the possi-
bility of complexing trace elements, decreasing feed intake, 
growth rate, protein digestibility, etc. [140–142]. However, 
due to their antioxidative character, tannins have also anti-
carcinogenic and antimutagenic potentials [141, 142].

As mentioned above, faba bean husks are rich in dietary 
fibres. One important fibre is pectin, which is used in many 
ways in food and pharmaceutical products due to its gelling, 
stabilizing, and emulsifying properties [143, 144]. As the 
global demand for pectin is steadily increasing and more 
and more industries emerge that require pectin [145], faba 
bean husks can be an excellent natural alternative to produce 
pectin [143, 146].

Faba bean husks can be a useful way to integrate phenolic 
compounds into foods as natural antioxidants, as they con-
tain up to 110 mg GAE  g−1 [19, 102, 138]. Due to the high 
TPC, husks of faba beans have high antioxidant properties. 
In experiments with enriched burger patties, results showed 

Table 6  Composition of faba bean husks [16, 19, 45, 124–137]. All 
values given as g  kg−1 DM (n number of observations, SD standard 
deviation)

n Mean Minimum Maximum SD

Crude fibre 12 457.5 302.2 628.0 103.9
Dietary fibres 4 781.0 731.0 823.0 41.5
Hemicellulose 11 49.9 12.3 108.7 33.4
Cellulose 10 614.7 435.1 747.5 105.0
Lignin 15 64.0 5.6 175.0 56.5
Crude protein 28 81.5 43.0 207.9 43.8
Starch 2 23.4 9.0 37.7 -
Fat 7 6.8 1.0 32.0 11.2
Ash 19 31.8 23.0 55.0 8.0
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that faba bean husks improved cooking properties, delayed 
lipid and protein oxidation, prevented colour changes, and 
decreased the microbiological load of burger patties [147].

Husks of faba beans among other legumes were incor-
porated into the recipe of Turkish noodles with the results 
that there were slight changes in texture, but sensory accept-
ability was still present at 10% (w/w) enrichment [148]. 
Another possible application of faba beans husks is to 
incorporate them into bread and, thus, enrich it with dietary 
fibres. While satiating effects increased compared to non-
enriched bread, consumer acceptance decreased slightly 
[149]. Further studies have shown that up to 21% of wheat 
flour can be substituted with faba bean husks without affect-
ing the texture and volume of the bread. Unfortunately, 
subjective sensory acceptance was not investigated by a 
panel in this study [124]. The enrichment of corn-based 
extruded snacks with husks or ground-fermented faba beans 
increased the nutritional value and did not influence con-
sumers’ acceptance [150].

In general, faba bean husks can improve the nutritional 
profile of foods, meeting increasing consumer demand for 
healthier foods with nutritionally valuable ingredients. In 
addition, it is advisable to improve the technofunctional 
and functional properties of the husks in the future through 
targeted technological processing and preparation, thus 
expanding their use in food.

5.2  Husks—feed use

As mentioned before, the anti-nutritional tannins limit the 
use of faba bean husks. In growing broiler chickens, it was 
shown that the addition of tannins to the basic feed sig-
nificantly reduced protein digestibility and that this effect 
increased with increasing tannin content [151, 152]. The 
same could be observed for other animal species such as 
sheep [125] and pigs [126, 127]. In a group of sheep fed 
with husks, at least a slight increase in the nitrogen retention 
could be proven [125]. Rubio et al. [128] have not been able 
to find any effect from the inclusion of husks or autoclaved 
husks in the feed of broiler chickens compared to husk-free 
feed. This is also in line with the results from an experiment 
in which the feed of sheep was substituted with up to 33% 
(w/w) husks and no significant differences could be detected 
[129].

In feeding experiments with faba bean seeds with vary-
ing levels of tannin in the diet of turkeys, the body weight 
gains of the turkeys were independent of the diet. However, 
feed conversion was lower in the groups fed with seeds low 
in tannin content than in the groups fed with high tannin 
seeds. The authors state that tannin-containing seeds can 
be mixed into the feed up to 30% (w/w) without negative 
effects [153]. Furthermore, Trevino et al. confirmed in their 
studies that the weight of the chickens, the feed intake, and 

feed efficiency were reduced by adding tannins to the feed 
[154]. In other studies, it was shown that chicken feedstuff 
with husks from tannin-rich varieties of faba beans caused a 
reduction in the digestion of amino acids, starch, and lipids 
compared to non-tannin-rich varieties [155]. The authors 
explained this with the inactivation of digestive enzymes 
through the formation of tannin-enzyme complexes in the 
digestive tract. The addition of husks or beans to piglet feed 
modified the microflora, with the potential to prevent intes-
tinal diseases through targeted legume supplements to the 
feed [156]. In further studies on the milk performance of 
dairy cows, it was found that the addition of 30% (w/w) 
field bean husks to the feed improved the milk yield, feed 
conversion, and fat content of the milk compared to the 
other treatments. In addition, the author described that up 
to 13.6% of the costs can be saved through this proportional 
substitution [130].

Considering these facts, it seems important to analyse the 
tannin content of faba bean husks and seeds in order to add 
the appropriate amounts to animal feed to have beneficial 
and cost-saving effects. Another possibility could be to focus 
on low-tannin varieties in cultivation and breeding.

5.3  Husks—non‑food use

The focus of the non-food utilization of faba bean husks 
has so far been on the application as low-cost and environ-
mentally friendly sorption agent to remove heavy metals 
and synthetic dyes from wastewaters.  Qm derived from the 
Langmuir mono-layer adsorption model of different studies 
is given in Table 7. Activated carbon (AC) prepared from 
different feedstock is listed for comparison of the adsorp-
tion capacities as it is the most commonly used adsorbent. 
Admittedly, the capacities cannot be compared directly 
with each other, due to differing experimental conditions 
that influence  Qm such as the temperature [157] and the pH 
value [158], yet a general evaluation can be obtained. It is 

Table 7  Comparison of adsorption capacity of different contaminants 
of faba bean husk and activated carbon (Qm maximum adsorption 
capacity, AC activated carbon)

Contaminant Sorption agent Qm [mg  g−1] Reference

Methylene blue Faba bean husk 192.7 [160]
Faba bean husk 140.0 [161]
Bamboo AC 454.2 [162]

Brilliant green Faba bean husk 21.7 [159]
Pine fruit shell AC 211.7–298.5 [163]

Eriochrome black T Faba bean husk 5.6 [159]
Rice hull AC 160.4 [164]

Cobalt Faba bean husk 0.9 [165]
Apricot stone AC 111.1 [166]
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evident that the untreated faba bean husks have significantly 
lower adsorption capacities than activated carbon, but they 
provide a low-cost and low-tech adsorption option. Nahali 
et al. [159] nevertheless deem it a promising adsorbent due 
to its regional abundance and the possibility to increase the 
adsorption capacity by experimental protocols that activate 
more sites. However, no concrete suggestions for procedures 
are given.

Other than adsorption, faba bean husks have been inves-
tigated as a natural colouring agent. Polyamide fabric sam-
ples were dyed with the aqueous extracts of husk powder, 
and different mordants were added. A colour gamut and a 
satisfactory dyeing performance could be achieved [167]. A 
variety of crop hull wastes, including faba beans, have been 
examined for their suitability as replacer of bleaching clays 
for the bleaching of crude soybean oil. The carbonized and 
activated husks could compete with the industrially used 
materials Fuller’s Earth and Tonsil N [168]. Furthermore, 
it was shown that the husks are suitable as substrate for the 
production of edible mushrooms, which in turn can be used 
for food and animal feed [131].

6  Conclusion

Several residual materials are produced throughout the har-
vesting and processing of faba beans. The plant residues con-
stitute about 50% (w/w) of the whole aboveground biomass, 
while the empty pods and husks account for about 11% and 
6% (w/w) on average, respectively. This paper highlighted 
the food, feed, and non-food valorization of those residues.

The most widespread application of the plant residues is 
the reincorporation into the soil as green manure. Removal 
of residues could adversely affect soil quality; thus, con-
sideration must always be given to what quantities can be 
reasonably removed. Nevertheless, a variety of bioeconomic 
applications have been investigated, including conventional 
processes such as combustion, anaerobic digestion, or etha-
nol production but also novel applications such as wastewa-
ter remediation, production of biocomposites, or production 
of pulp and paper. The fresh faba greens have potential as 
an unconventional vegetable due to their nutrient-rich com-
position. The straw might be used as roughage or in a mixed 
diet for animals, but since the metabolizable energy con-
tent and the digestibility are rather low, supplementation or 
pre-treatment might be necessary to attain optimum animal 
performance.

Faba bean pods are only produced as a separate frac-
tion when the beans are freshly harvested; otherwise, they 
are part of the harvest residues. Owing to their nutrient-
rich composition, the pods should be recognized as a new 
vegetable for human consumption. Likewise, the pods 

constitute a source for the extraction of several value-
added compounds, such as cellulose, peroxidases, or bio-
active substances. The use of faba pods in the feed sector 
has been little studied so far. Despite their high-fibre con-
tent, they can be beneficial for animal nutrition as a source 
of bioactive substances. In addition, it was shown that the 
pods might be effective in remediating wastewater.

Both when consuming fresh and dry beans, the husks are 
usually removed in order to increase the nutritive benefits 
of the beans, as the husks contain high contents of anti-
nutrients. Therefore, they should only be included in diets 
to a certain extent, for example, to enrich food products with 
antioxidants or fibres. In the feed sector, the use of the husks 
is also limited by the anti-nutritional properties, and the tan-
nin content should be carefully monitored before including 
the husks in an animal’s diet. Until now, research on the 
husks in the non-food sector has focused on the applica-
tion as a low-cost environmentally friendly sorption agent 
to remove heavy metals and synthetic dyes from wastewater.

This review paper has shown that the residual materi-
als of faba beans contain valuable components and might 
be used for a multitude of different applications, be it in 
the food, feed, or non-feed sector. The material should thus 
not be disposed of but further valorised in order to exploit 
the full potential of the biomass. However, especially with 
regard to food and non-food use, the valorization processes 
still have to be established. Further research is particularly 
needed to unleash the potential of husks and pods for differ-
ent applications.
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